SAE-AISI 1065 Steel vs. EN 1.4057 Stainless Steel
Both SAE-AISI 1065 steel and EN 1.4057 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 1065 steel and the bottom bar is EN 1.4057 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
200 |
Elongation at Break, % | 11 to 14 | |
11 to 17 |
Fatigue Strength, MPa | 270 to 340 | |
320 to 430 |
Poisson's Ratio | 0.29 | |
0.28 |
Shear Modulus, GPa | 72 | |
77 |
Shear Strength, MPa | 430 to 470 | |
520 to 580 |
Tensile Strength: Ultimate (UTS), MPa | 710 to 780 | |
840 to 980 |
Tensile Strength: Yield (Proof), MPa | 430 to 550 | |
530 to 790 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
280 |
Maximum Temperature: Mechanical, °C | 400 | |
850 |
Melting Completion (Liquidus), °C | 1460 | |
1440 |
Melting Onset (Solidus), °C | 1420 | |
1390 |
Specific Heat Capacity, J/kg-K | 470 | |
480 |
Thermal Conductivity, W/m-K | 51 | |
25 |
Thermal Expansion, µm/m-K | 11 | |
10 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 11 | |
2.5 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 12 | |
2.9 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.8 | |
9.5 |
Density, g/cm3 | 7.8 | |
7.7 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
2.2 |
Embodied Energy, MJ/kg | 19 | |
32 |
Embodied Water, L/kg | 46 | |
120 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 74 to 90 | |
96 to 130 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 490 to 820 | |
700 to 1610 |
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
25 |
Strength to Weight: Axial, points | 25 to 28 | |
30 to 35 |
Strength to Weight: Bending, points | 23 to 24 | |
26 to 28 |
Thermal Diffusivity, mm2/s | 14 | |
6.7 |
Thermal Shock Resistance, points | 25 to 27 | |
30 to 35 |
Alloy Composition
Carbon (C), % | 0.6 to 0.7 | |
0.12 to 0.22 |
Chromium (Cr), % | 0 | |
15 to 17 |
Iron (Fe), % | 98.3 to 98.8 | |
77.7 to 83.4 |
Manganese (Mn), % | 0.6 to 0.9 | |
0 to 1.5 |
Nickel (Ni), % | 0 | |
1.5 to 2.5 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.040 |
Silicon (Si), % | 0 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.050 | |
0 to 0.015 |