MakeItFrom.com
Menu (ESC)

SAE-AISI 1065 Steel vs. C34000 Brass

SAE-AISI 1065 steel belongs to the iron alloys classification, while C34000 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1065 steel and the bottom bar is C34000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 72
40
Tensile Strength: Ultimate (UTS), MPa 710 to 780
340 to 650

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
120
Melting Completion (Liquidus), °C 1460
930
Melting Onset (Solidus), °C 1420
890
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 51
120
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
26
Electrical Conductivity: Equal Weight (Specific), % IACS 12
29

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
24
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.4
2.6
Embodied Energy, MJ/kg 19
45
Embodied Water, L/kg 46
320

Common Calculations

Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 25 to 28
11 to 22
Strength to Weight: Bending, points 23 to 24
13 to 21
Thermal Diffusivity, mm2/s 14
37
Thermal Shock Resistance, points 25 to 27
11 to 22

Alloy Composition

Carbon (C), % 0.6 to 0.7
0
Copper (Cu), % 0
62 to 65
Iron (Fe), % 98.3 to 98.8
0 to 0.1
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 0.6 to 0.9
0
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Zinc (Zn), % 0
33 to 37.2
Residuals, % 0
0 to 0.4