MakeItFrom.com
Menu (ESC)

SAE-AISI 1065 Steel vs. S39277 Stainless Steel

Both SAE-AISI 1065 steel and S39277 stainless steel are iron alloys. They have 61% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1065 steel and the bottom bar is S39277 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 230
250
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 11 to 14
28
Fatigue Strength, MPa 270 to 340
480
Poisson's Ratio 0.29
0.27
Reduction in Area, % 34 to 51
57
Shear Modulus, GPa 72
80
Shear Strength, MPa 430 to 470
600
Tensile Strength: Ultimate (UTS), MPa 710 to 780
930
Tensile Strength: Yield (Proof), MPa 430 to 550
660

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
16
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
4.2
Embodied Energy, MJ/kg 19
59
Embodied Water, L/kg 46
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 90
240
Resilience: Unit (Modulus of Resilience), kJ/m3 490 to 820
1070
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25 to 28
33
Strength to Weight: Bending, points 23 to 24
27
Thermal Diffusivity, mm2/s 14
4.2
Thermal Shock Resistance, points 25 to 27
26

Alloy Composition

Carbon (C), % 0.6 to 0.7
0 to 0.025
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0
1.2 to 2.0
Iron (Fe), % 98.3 to 98.8
56.8 to 64.3
Manganese (Mn), % 0.6 to 0.9
0 to 0.8
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
6.5 to 8.0
Nitrogen (N), % 0
0.23 to 0.33
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0 to 0.050
0 to 0.0020
Tungsten (W), % 0
0.8 to 1.2