MakeItFrom.com
Menu (ESC)

SAE-AISI 1070 Steel vs. ASTM A182 Grade F122

Both SAE-AISI 1070 steel and ASTM A182 grade F122 are iron alloys. They have 85% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1070 steel and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 230
220
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 10 to 13
23
Fatigue Strength, MPa 270 to 350
320
Poisson's Ratio 0.29
0.28
Reduction in Area, % 34 to 51
45
Shear Modulus, GPa 72
76
Shear Strength, MPa 380 to 460
450
Tensile Strength: Ultimate (UTS), MPa 640 to 760
710
Tensile Strength: Yield (Proof), MPa 420 to 560
450

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
600
Melting Completion (Liquidus), °C 1460
1490
Melting Onset (Solidus), °C 1420
1440
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
24
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
10
Electrical Conductivity: Equal Weight (Specific), % IACS 12
12

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
12
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.4
3.0
Embodied Energy, MJ/kg 19
44
Embodied Water, L/kg 46
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59 to 86
140
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 850
520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23 to 27
25
Strength to Weight: Bending, points 21 to 24
22
Thermal Diffusivity, mm2/s 14
6.4
Thermal Shock Resistance, points 21 to 25
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0.65 to 0.75
0.070 to 0.14
Chromium (Cr), % 0
10 to 11.5
Copper (Cu), % 0
0.3 to 1.7
Iron (Fe), % 98.3 to 98.8
81.3 to 87.7
Manganese (Mn), % 0.6 to 0.9
0 to 0.7
Molybdenum (Mo), % 0
0.25 to 0.6
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zirconium (Zr), % 0
0 to 0.010