SAE-AISI 1070 Steel vs. EN 1.4418 Stainless Steel
Both SAE-AISI 1070 steel and EN 1.4418 stainless steel are iron alloys. They have 78% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 1070 steel and the bottom bar is EN 1.4418 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
200 |
Elongation at Break, % | 10 to 13 | |
16 to 20 |
Fatigue Strength, MPa | 270 to 350 | |
350 to 480 |
Poisson's Ratio | 0.29 | |
0.28 |
Shear Modulus, GPa | 72 | |
77 |
Shear Strength, MPa | 380 to 460 | |
530 to 620 |
Tensile Strength: Ultimate (UTS), MPa | 640 to 760 | |
860 to 1000 |
Tensile Strength: Yield (Proof), MPa | 420 to 560 | |
540 to 790 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
280 |
Maximum Temperature: Mechanical, °C | 400 | |
870 |
Melting Completion (Liquidus), °C | 1460 | |
1450 |
Melting Onset (Solidus), °C | 1420 | |
1400 |
Specific Heat Capacity, J/kg-K | 470 | |
480 |
Thermal Conductivity, W/m-K | 50 | |
15 |
Thermal Expansion, µm/m-K | 12 | |
10 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 10 | |
2.2 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 12 | |
2.5 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.8 | |
13 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
2.8 |
Embodied Energy, MJ/kg | 19 | |
39 |
Embodied Water, L/kg | 46 | |
130 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 59 to 86 | |
130 to 170 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 470 to 850 | |
730 to 1590 |
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
25 |
Strength to Weight: Axial, points | 23 to 27 | |
31 to 36 |
Strength to Weight: Bending, points | 21 to 24 | |
26 to 28 |
Thermal Diffusivity, mm2/s | 14 | |
4.0 |
Thermal Shock Resistance, points | 21 to 25 | |
31 to 36 |
Alloy Composition
Carbon (C), % | 0.65 to 0.75 | |
0 to 0.060 |
Chromium (Cr), % | 0 | |
15 to 17 |
Iron (Fe), % | 98.3 to 98.8 | |
73.2 to 80.2 |
Manganese (Mn), % | 0.6 to 0.9 | |
0 to 1.5 |
Molybdenum (Mo), % | 0 | |
0.8 to 1.5 |
Nickel (Ni), % | 0 | |
4.0 to 6.0 |
Nitrogen (N), % | 0 | |
0 to 0.020 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.040 |
Silicon (Si), % | 0 | |
0 to 0.7 |
Sulfur (S), % | 0 to 0.050 | |
0 to 0.015 |