MakeItFrom.com
Menu (ESC)

SAE-AISI 1070 Steel vs. CC492K Bronze

SAE-AISI 1070 steel belongs to the iron alloys classification, while CC492K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1070 steel and the bottom bar is CC492K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 230
78
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 10 to 13
14
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
40
Tensile Strength: Ultimate (UTS), MPa 640 to 760
280
Tensile Strength: Yield (Proof), MPa 420 to 560
150

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
1000
Melting Onset (Solidus), °C 1420
900
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 50
73
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
13
Electrical Conductivity: Equal Weight (Specific), % IACS 12
13

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
33
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.4
3.4
Embodied Energy, MJ/kg 19
54
Embodied Water, L/kg 46
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59 to 86
33
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 850
100
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 23 to 27
8.7
Strength to Weight: Bending, points 21 to 24
11
Thermal Diffusivity, mm2/s 14
23
Thermal Shock Resistance, points 21 to 25
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.65 to 0.75
0
Copper (Cu), % 0
83 to 89
Iron (Fe), % 98.3 to 98.8
0 to 0.2
Lead (Pb), % 0
2.5 to 3.5
Manganese (Mn), % 0.6 to 0.9
0
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0 to 0.040
0 to 0.1
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0 to 0.050
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
1.5 to 3.0