MakeItFrom.com
Menu (ESC)

SAE-AISI 1070 Steel vs. CR018A Copper

SAE-AISI 1070 steel belongs to the iron alloys classification, while CR018A copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1070 steel and the bottom bar is CR018A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 10 to 13
15
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
43
Tensile Strength: Ultimate (UTS), MPa 640 to 760
220
Tensile Strength: Yield (Proof), MPa 420 to 560
130

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 50
390
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
100
Electrical Conductivity: Equal Weight (Specific), % IACS 12
100

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
33
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 19
42
Embodied Water, L/kg 46
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59 to 86
29
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 850
76
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 23 to 27
6.8
Strength to Weight: Bending, points 21 to 24
9.0
Thermal Diffusivity, mm2/s 14
110
Thermal Shock Resistance, points 21 to 25
7.8

Alloy Composition

Bismuth (Bi), % 0
0 to 0.00050
Carbon (C), % 0.65 to 0.75
0
Copper (Cu), % 0
99.914 to 99.94
Iron (Fe), % 98.3 to 98.8
0
Manganese (Mn), % 0.6 to 0.9
0
Phosphorus (P), % 0 to 0.040
0
Silver (Ag), % 0
0.060 to 0.080
Sulfur (S), % 0 to 0.050
0