MakeItFrom.com
Menu (ESC)

SAE-AISI 1070 Steel vs. Grade 26 Titanium

SAE-AISI 1070 steel belongs to the iron alloys classification, while grade 26 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1070 steel and the bottom bar is grade 26 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 10 to 13
23
Fatigue Strength, MPa 270 to 350
250
Poisson's Ratio 0.29
0.32
Reduction in Area, % 34 to 51
34
Shear Modulus, GPa 72
41
Shear Strength, MPa 380 to 460
250
Tensile Strength: Ultimate (UTS), MPa 640 to 760
390
Tensile Strength: Yield (Proof), MPa 420 to 560
350

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 50
21
Thermal Expansion, µm/m-K 12
9.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 12
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
33
Embodied Energy, MJ/kg 19
530
Embodied Water, L/kg 46
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59 to 86
85
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 850
580
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 23 to 27
24
Strength to Weight: Bending, points 21 to 24
26
Thermal Diffusivity, mm2/s 14
8.6
Thermal Shock Resistance, points 21 to 25
28

Alloy Composition

Carbon (C), % 0.65 to 0.75
0 to 0.080
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 98.3 to 98.8
0 to 0.3
Manganese (Mn), % 0.6 to 0.9
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Ruthenium (Ru), % 0
0.080 to 0.14
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
98.8 to 99.92
Residuals, % 0
0 to 0.4