MakeItFrom.com
Menu (ESC)

SAE-AISI 1070 Steel vs. C18900 Copper

SAE-AISI 1070 steel belongs to the iron alloys classification, while C18900 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1070 steel and the bottom bar is C18900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 10 to 13
14 to 48
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
43
Shear Strength, MPa 380 to 460
190 to 300
Tensile Strength: Ultimate (UTS), MPa 640 to 760
260 to 500
Tensile Strength: Yield (Proof), MPa 420 to 560
67 to 390

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1020
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 50
130
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
30
Electrical Conductivity: Equal Weight (Specific), % IACS 12
30

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 19
42
Embodied Water, L/kg 46
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59 to 86
65 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 850
20 to 660
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 23 to 27
8.2 to 16
Strength to Weight: Bending, points 21 to 24
10 to 16
Thermal Diffusivity, mm2/s 14
38
Thermal Shock Resistance, points 21 to 25
9.3 to 18

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0.65 to 0.75
0
Copper (Cu), % 0
97.7 to 99.15
Iron (Fe), % 98.3 to 98.8
0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.6 to 0.9
0.1 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0
0.15 to 0.4
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0.6 to 0.9
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5