MakeItFrom.com
Menu (ESC)

SAE-AISI 1070 Steel vs. C69400 Brass

SAE-AISI 1070 steel belongs to the iron alloys classification, while C69400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1070 steel and the bottom bar is C69400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 10 to 13
17
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
42
Shear Strength, MPa 380 to 460
350
Tensile Strength: Ultimate (UTS), MPa 640 to 760
570
Tensile Strength: Yield (Proof), MPa 420 to 560
270

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
920
Melting Onset (Solidus), °C 1420
820
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 50
26
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
6.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
27
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 19
44
Embodied Water, L/kg 46
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59 to 86
80
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 850
340
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 23 to 27
19
Strength to Weight: Bending, points 21 to 24
18
Thermal Diffusivity, mm2/s 14
7.7
Thermal Shock Resistance, points 21 to 25
20

Alloy Composition

Carbon (C), % 0.65 to 0.75
0
Copper (Cu), % 0
80 to 83
Iron (Fe), % 98.3 to 98.8
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.6 to 0.9
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
3.5 to 4.5
Sulfur (S), % 0 to 0.050
0
Zinc (Zn), % 0
11.5 to 16.5
Residuals, % 0
0 to 0.5