MakeItFrom.com
Menu (ESC)

SAE-AISI 1070 Steel vs. C81500 Copper

SAE-AISI 1070 steel belongs to the iron alloys classification, while C81500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1070 steel and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 230
110
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 10 to 13
17
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
44
Tensile Strength: Ultimate (UTS), MPa 640 to 760
350
Tensile Strength: Yield (Proof), MPa 420 to 560
280

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1420
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 50
320
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
82
Electrical Conductivity: Equal Weight (Specific), % IACS 12
83

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
2.6
Embodied Energy, MJ/kg 19
41
Embodied Water, L/kg 46
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59 to 86
56
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 850
330
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 23 to 27
11
Strength to Weight: Bending, points 21 to 24
12
Thermal Diffusivity, mm2/s 14
91
Thermal Shock Resistance, points 21 to 25
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0.65 to 0.75
0
Chromium (Cr), % 0
0.4 to 1.5
Copper (Cu), % 0
97.4 to 99.6
Iron (Fe), % 98.3 to 98.8
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.6 to 0.9
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
0 to 0.15
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5