MakeItFrom.com
Menu (ESC)

SAE-AISI 1070 Steel vs. C84100 Brass

SAE-AISI 1070 steel belongs to the iron alloys classification, while C84100 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1070 steel and the bottom bar is C84100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 230
65
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 10 to 13
13
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
39
Tensile Strength: Ultimate (UTS), MPa 640 to 760
230
Tensile Strength: Yield (Proof), MPa 420 to 560
81

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 400
160
Melting Completion (Liquidus), °C 1460
1000
Melting Onset (Solidus), °C 1420
810
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 50
110
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
23
Electrical Conductivity: Equal Weight (Specific), % IACS 12
25

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
29
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.4
2.9
Embodied Energy, MJ/kg 19
48
Embodied Water, L/kg 46
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59 to 86
24
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 850
30
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 23 to 27
7.4
Strength to Weight: Bending, points 21 to 24
9.7
Thermal Diffusivity, mm2/s 14
33
Thermal Shock Resistance, points 21 to 25
7.8

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.050
Bismuth (Bi), % 0
0 to 0.090
Carbon (C), % 0.65 to 0.75
0
Copper (Cu), % 0
78 to 85
Iron (Fe), % 98.3 to 98.8
0 to 0.3
Lead (Pb), % 0
0.050 to 0.25
Manganese (Mn), % 0.6 to 0.9
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
1.5 to 4.5
Zinc (Zn), % 0
12 to 20
Residuals, % 0
0 to 0.5