MakeItFrom.com
Menu (ESC)

SAE-AISI 1074 Steel vs. Nickel 890

SAE-AISI 1074 steel belongs to the iron alloys classification, while nickel 890 belongs to the nickel alloys. They have a modest 26% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1074 steel and the bottom bar is nickel 890.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 11 to 14
39
Fatigue Strength, MPa 290 to 350
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
78
Shear Strength, MPa 440 to 490
400
Tensile Strength: Ultimate (UTS), MPa 740 to 820
590
Tensile Strength: Yield (Proof), MPa 450 to 570
230

Thermal Properties

Latent Heat of Fusion, J/g 250
330
Maximum Temperature: Mechanical, °C 400
1000
Melting Completion (Liquidus), °C 1460
1390
Melting Onset (Solidus), °C 1420
1340
Specific Heat Capacity, J/kg-K 470
480
Thermal Expansion, µm/m-K 12
14

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
47
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.4
8.2
Embodied Energy, MJ/kg 19
120
Embodied Water, L/kg 46
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 94
180
Resilience: Unit (Modulus of Resilience), kJ/m3 550 to 860
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26 to 29
20
Strength to Weight: Bending, points 23 to 25
19
Thermal Shock Resistance, points 24 to 26
15

Alloy Composition

Aluminum (Al), % 0
0.050 to 0.6
Carbon (C), % 0.7 to 0.8
0.060 to 0.14
Chromium (Cr), % 0
23.5 to 28.5
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 98.3 to 98.8
17.3 to 33.9
Manganese (Mn), % 0.5 to 0.8
0 to 1.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
40 to 45
Niobium (Nb), % 0
0.2 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Tantalum (Ta), % 0
0.1 to 0.6
Titanium (Ti), % 0
0.15 to 0.6