MakeItFrom.com
Menu (ESC)

SAE-AISI 1074 Steel vs. N12160 Nickel

SAE-AISI 1074 steel belongs to the iron alloys classification, while N12160 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1074 steel and the bottom bar is N12160 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 11 to 14
45
Fatigue Strength, MPa 290 to 350
230
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
80
Shear Strength, MPa 440 to 490
500
Tensile Strength: Ultimate (UTS), MPa 740 to 820
710
Tensile Strength: Yield (Proof), MPa 450 to 570
270

Thermal Properties

Latent Heat of Fusion, J/g 250
360
Maximum Temperature: Mechanical, °C 400
1060
Melting Completion (Liquidus), °C 1460
1330
Melting Onset (Solidus), °C 1420
1280
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
11
Thermal Expansion, µm/m-K 12
13

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
90
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.4
8.5
Embodied Energy, MJ/kg 19
120
Embodied Water, L/kg 46
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 94
260
Resilience: Unit (Modulus of Resilience), kJ/m3 550 to 860
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26 to 29
24
Strength to Weight: Bending, points 23 to 25
22
Thermal Diffusivity, mm2/s 14
2.8
Thermal Shock Resistance, points 24 to 26
19

Alloy Composition

Carbon (C), % 0.7 to 0.8
0 to 0.15
Chromium (Cr), % 0
26 to 30
Cobalt (Co), % 0
27 to 33
Iron (Fe), % 98.3 to 98.8
0 to 3.5
Manganese (Mn), % 0.5 to 0.8
0 to 1.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
25 to 44.4
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0
2.4 to 3.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Titanium (Ti), % 0
0.2 to 0.8
Tungsten (W), % 0
0 to 1.0