MakeItFrom.com
Menu (ESC)

SAE-AISI 1080 Steel vs. 6014 Aluminum

SAE-AISI 1080 steel belongs to the iron alloys classification, while 6014 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI 1080 steel and the bottom bar is 6014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 11
9.1 to 17
Fatigue Strength, MPa 300 to 360
43 to 79
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
26
Shear Strength, MPa 460 to 520
96 to 150
Tensile Strength: Ultimate (UTS), MPa 770 to 870
160 to 260
Tensile Strength: Yield (Proof), MPa 480 to 590
80 to 200

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 400
180
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
620
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 51
200
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.6
53
Electrical Conductivity: Equal Weight (Specific), % IACS 11
180

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.4
8.6
Embodied Energy, MJ/kg 19
160
Embodied Water, L/kg 46
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 84
22
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 920
46 to 300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 27 to 31
16 to 26
Strength to Weight: Bending, points 24 to 26
24 to 33
Thermal Diffusivity, mm2/s 14
83
Thermal Shock Resistance, points 25 to 29
7.0 to 11

Alloy Composition

Aluminum (Al), % 0
97.1 to 99.2
Carbon (C), % 0.75 to 0.88
0
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 98.1 to 98.7
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0.6 to 0.9
0.050 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
0.3 to 0.6
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15