MakeItFrom.com
Menu (ESC)

SAE-AISI 1080 Steel vs. AWS E385

Both SAE-AISI 1080 steel and AWS E385 are iron alloys. They have 47% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1080 steel and the bottom bar is AWS E385.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 11
34
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
79
Tensile Strength: Ultimate (UTS), MPa 770 to 870
580

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1410
1390
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 51
14
Thermal Expansion, µm/m-K 12
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.6
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 11
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
31
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.4
5.8
Embodied Energy, MJ/kg 19
79
Embodied Water, L/kg 46
200

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 27 to 31
20
Strength to Weight: Bending, points 24 to 26
19
Thermal Diffusivity, mm2/s 14
3.6
Thermal Shock Resistance, points 25 to 29
15

Alloy Composition

Carbon (C), % 0.75 to 0.88
0 to 0.030
Chromium (Cr), % 0
19.5 to 21.5
Copper (Cu), % 0
1.2 to 2.0
Iron (Fe), % 98.1 to 98.7
41.8 to 50.1
Manganese (Mn), % 0.6 to 0.9
1.0 to 2.5
Molybdenum (Mo), % 0
4.2 to 5.2
Nickel (Ni), % 0
24 to 26
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0
0 to 0.9
Sulfur (S), % 0 to 0.050
0 to 0.020