MakeItFrom.com
Menu (ESC)

SAE-AISI 1080 Steel vs. EN 1.0920 Steel

Both SAE-AISI 1080 steel and EN 1.0920 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1080 steel and the bottom bar is EN 1.0920 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220 to 260
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11
23
Fatigue Strength, MPa 300 to 360
270
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Shear Strength, MPa 460 to 520
340
Tensile Strength: Ultimate (UTS), MPa 770 to 870
540
Tensile Strength: Yield (Proof), MPa 480 to 590
380

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
50
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.6
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.4
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.6
Embodied Energy, MJ/kg 19
22
Embodied Water, L/kg 46
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 84
110
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 920
380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 27 to 31
19
Strength to Weight: Bending, points 24 to 26
19
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 25 to 29
17

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0.75 to 0.88
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 98.1 to 98.7
96.1 to 99.08
Manganese (Mn), % 0.6 to 0.9
0.9 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.030
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.12