MakeItFrom.com
Menu (ESC)

SAE-AISI 1080 Steel vs. Titanium 15-3-3-3

SAE-AISI 1080 steel belongs to the iron alloys classification, while titanium 15-3-3-3 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1080 steel and the bottom bar is titanium 15-3-3-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 11
5.7 to 8.0
Fatigue Strength, MPa 300 to 360
610 to 710
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
39
Shear Strength, MPa 460 to 520
660 to 810
Tensile Strength: Ultimate (UTS), MPa 770 to 870
1120 to 1390
Tensile Strength: Yield (Proof), MPa 480 to 590
1100 to 1340

Thermal Properties

Latent Heat of Fusion, J/g 250
390
Maximum Temperature: Mechanical, °C 400
430
Melting Completion (Liquidus), °C 1450
1620
Melting Onset (Solidus), °C 1410
1560
Specific Heat Capacity, J/kg-K 470
520
Thermal Conductivity, W/m-K 51
8.1
Thermal Expansion, µm/m-K 12
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.6
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
40
Density, g/cm3 7.8
4.8
Embodied Carbon, kg CO2/kg material 1.4
59
Embodied Energy, MJ/kg 19
950
Embodied Water, L/kg 46
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 84
78 to 89
Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 24
32
Strength to Weight: Axial, points 27 to 31
64 to 80
Strength to Weight: Bending, points 24 to 26
50 to 57
Thermal Diffusivity, mm2/s 14
3.2
Thermal Shock Resistance, points 25 to 29
79 to 98

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0.75 to 0.88
0 to 0.050
Chromium (Cr), % 0
2.5 to 3.5
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 98.1 to 98.7
0 to 0.25
Manganese (Mn), % 0.6 to 0.9
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
2.5 to 3.5
Titanium (Ti), % 0
72.6 to 78.5
Vanadium (V), % 0
14 to 16
Residuals, % 0
0 to 0.4