MakeItFrom.com
Menu (ESC)

SAE-AISI 1080 Steel vs. C42600 Brass

SAE-AISI 1080 steel belongs to the iron alloys classification, while C42600 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1080 steel and the bottom bar is C42600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11
1.1 to 40
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
42
Shear Strength, MPa 460 to 520
280 to 470
Tensile Strength: Ultimate (UTS), MPa 770 to 870
410 to 830
Tensile Strength: Yield (Proof), MPa 480 to 590
220 to 810

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 400
180
Melting Completion (Liquidus), °C 1450
1030
Melting Onset (Solidus), °C 1410
1010
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 51
110
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.6
25
Electrical Conductivity: Equal Weight (Specific), % IACS 11
26

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
31
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.4
2.9
Embodied Energy, MJ/kg 19
48
Embodied Water, L/kg 46
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 84
9.4 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 920
230 to 2970
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 27 to 31
13 to 27
Strength to Weight: Bending, points 24 to 26
14 to 23
Thermal Diffusivity, mm2/s 14
33
Thermal Shock Resistance, points 25 to 29
15 to 29

Alloy Composition

Carbon (C), % 0.75 to 0.88
0
Copper (Cu), % 0
87 to 90
Iron (Fe), % 98.1 to 98.7
0.050 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.6 to 0.9
0
Nickel (Ni), % 0
0.050 to 0.2
Phosphorus (P), % 0 to 0.040
0.020 to 0.050
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
2.5 to 4.0
Zinc (Zn), % 0
5.3 to 10.4
Residuals, % 0
0 to 0.2