MakeItFrom.com
Menu (ESC)

SAE-AISI 1080 Steel vs. C64210 Bronze

SAE-AISI 1080 steel belongs to the iron alloys classification, while C64210 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1080 steel and the bottom bar is C64210 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11
35
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
42
Shear Strength, MPa 460 to 520
380
Tensile Strength: Ultimate (UTS), MPa 770 to 870
570
Tensile Strength: Yield (Proof), MPa 480 to 590
290

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
210
Melting Completion (Liquidus), °C 1450
1040
Melting Onset (Solidus), °C 1410
990
Specific Heat Capacity, J/kg-K 470
430
Thermal Conductivity, W/m-K 51
48
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.6
13
Electrical Conductivity: Equal Weight (Specific), % IACS 11
14

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
29
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 1.4
3.0
Embodied Energy, MJ/kg 19
49
Embodied Water, L/kg 46
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 84
170
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 920
360
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 27 to 31
19
Strength to Weight: Bending, points 24 to 26
18
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 25 to 29
21

Alloy Composition

Aluminum (Al), % 0
6.3 to 7.0
Arsenic (As), % 0
0 to 0.15
Carbon (C), % 0.75 to 0.88
0
Copper (Cu), % 0
89 to 92.2
Iron (Fe), % 98.1 to 98.7
0 to 0.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.6 to 0.9
0 to 0.1
Nickel (Ni), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
1.5 to 2.0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5