MakeItFrom.com
Menu (ESC)

SAE-AISI 1080 Steel vs. S44660 Stainless Steel

Both SAE-AISI 1080 steel and S44660 stainless steel are iron alloys. They have 66% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1080 steel and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220 to 260
210
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 11
20
Fatigue Strength, MPa 300 to 360
330
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 72
81
Shear Strength, MPa 460 to 520
410
Tensile Strength: Ultimate (UTS), MPa 770 to 870
660
Tensile Strength: Yield (Proof), MPa 480 to 590
510

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
17
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.6
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
21
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.4
4.3
Embodied Energy, MJ/kg 19
61
Embodied Water, L/kg 46
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 84
120
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 920
640
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 27 to 31
24
Strength to Weight: Bending, points 24 to 26
22
Thermal Diffusivity, mm2/s 14
4.5
Thermal Shock Resistance, points 25 to 29
21

Alloy Composition

Carbon (C), % 0.75 to 0.88
0 to 0.030
Chromium (Cr), % 0
25 to 28
Iron (Fe), % 98.1 to 98.7
60.4 to 71
Manganese (Mn), % 0.6 to 0.9
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.0