MakeItFrom.com
Menu (ESC)

SAE-AISI 1086 Steel vs. Grade Ti-Pd18 Titanium

SAE-AISI 1086 steel belongs to the iron alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1086 steel and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220 to 260
320
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11
17
Fatigue Strength, MPa 300 to 360
350
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 72
40
Tensile Strength: Ultimate (UTS), MPa 760 to 870
710
Tensile Strength: Yield (Proof), MPa 480 to 580
540

Thermal Properties

Latent Heat of Fusion, J/g 240
410
Maximum Temperature: Mechanical, °C 400
330
Melting Completion (Liquidus), °C 1460
1640
Melting Onset (Solidus), °C 1410
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 50
8.2
Thermal Expansion, µm/m-K 11
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
41
Embodied Energy, MJ/kg 19
670
Embodied Water, L/kg 45
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 84
110
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 890
1380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 27 to 31
44
Strength to Weight: Bending, points 24 to 26
39
Thermal Diffusivity, mm2/s 14
3.3
Thermal Shock Resistance, points 26 to 30
52

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0.8 to 0.93
0 to 0.1
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 98.5 to 98.9
0 to 0.25
Manganese (Mn), % 0.3 to 0.5
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4