MakeItFrom.com
Menu (ESC)

SAE-AISI 1086 Steel vs. C18400 Copper

SAE-AISI 1086 steel belongs to the iron alloys classification, while C18400 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1086 steel and the bottom bar is C18400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 11
13 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
44
Shear Strength, MPa 450 to 520
190 to 310
Tensile Strength: Ultimate (UTS), MPa 760 to 870
270 to 490
Tensile Strength: Yield (Proof), MPa 480 to 580
110 to 480

Thermal Properties

Latent Heat of Fusion, J/g 240
210
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1410
1070
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 50
320
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
80
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
81

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
2.6
Embodied Energy, MJ/kg 19
41
Embodied Water, L/kg 45
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 84
63 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 890
54 to 980
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 27 to 31
8.5 to 15
Strength to Weight: Bending, points 24 to 26
10 to 16
Thermal Diffusivity, mm2/s 14
94
Thermal Shock Resistance, points 26 to 30
9.6 to 17

Alloy Composition

Arsenic (As), % 0
0 to 0.0050
Calcium (Ca), % 0
0 to 0.0050
Carbon (C), % 0.8 to 0.93
0
Chromium (Cr), % 0
0.4 to 1.2
Copper (Cu), % 0
97.2 to 99.6
Iron (Fe), % 98.5 to 98.9
0 to 0.15
Lithium (Li), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0 to 0.050
0
Zinc (Zn), % 0
0 to 0.7
Residuals, % 0
0 to 0.5