MakeItFrom.com
Menu (ESC)

SAE-AISI 1086 Steel vs. C36500 Muntz Metal

SAE-AISI 1086 steel belongs to the iron alloys classification, while C36500 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1086 steel and the bottom bar is C36500 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 11
40
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 72
39
Shear Strength, MPa 450 to 520
270
Tensile Strength: Ultimate (UTS), MPa 760 to 870
400
Tensile Strength: Yield (Proof), MPa 480 to 580
160

Thermal Properties

Latent Heat of Fusion, J/g 240
170
Maximum Temperature: Mechanical, °C 400
120
Melting Completion (Liquidus), °C 1460
900
Melting Onset (Solidus), °C 1410
890
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 50
120
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
28
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
32

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 19
46
Embodied Water, L/kg 45
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 84
130
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 890
120
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 27 to 31
14
Strength to Weight: Bending, points 24 to 26
15
Thermal Diffusivity, mm2/s 14
40
Thermal Shock Resistance, points 26 to 30
13

Alloy Composition

Carbon (C), % 0.8 to 0.93
0
Copper (Cu), % 0
58 to 61
Iron (Fe), % 98.5 to 98.9
0 to 0.15
Lead (Pb), % 0
0.25 to 0.7
Manganese (Mn), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
37.5 to 41.8
Residuals, % 0
0 to 0.4