MakeItFrom.com
Menu (ESC)

SAE-AISI 1086 Steel vs. C87600 Bronze

SAE-AISI 1086 steel belongs to the iron alloys classification, while C87600 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1086 steel and the bottom bar is C87600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11
18
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
42
Tensile Strength: Ultimate (UTS), MPa 760 to 870
470
Tensile Strength: Yield (Proof), MPa 480 to 580
230

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 400
190
Melting Completion (Liquidus), °C 1460
970
Melting Onset (Solidus), °C 1410
860
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 50
28
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
29
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 19
43
Embodied Water, L/kg 45
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 84
71
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 890
240
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 27 to 31
16
Strength to Weight: Bending, points 24 to 26
16
Thermal Diffusivity, mm2/s 14
8.1
Thermal Shock Resistance, points 26 to 30
17

Alloy Composition

Carbon (C), % 0.8 to 0.93
0
Copper (Cu), % 0
88 to 92.5
Iron (Fe), % 98.5 to 98.9
0
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
3.5 to 5.5
Sulfur (S), % 0 to 0.050
0
Zinc (Zn), % 0
4.0 to 7.0
Residuals, % 0
0 to 0.5