MakeItFrom.com
Menu (ESC)

SAE-AISI 1086 Steel vs. C89320 Bronze

SAE-AISI 1086 steel belongs to the iron alloys classification, while C89320 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1086 steel and the bottom bar is C89320 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11
17
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
40
Tensile Strength: Ultimate (UTS), MPa 760 to 870
270
Tensile Strength: Yield (Proof), MPa 480 to 580
140

Thermal Properties

Latent Heat of Fusion, J/g 240
190
Maximum Temperature: Mechanical, °C 400
180
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1410
930
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 50
56
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
15
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
15

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
37
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
3.5
Embodied Energy, MJ/kg 19
56
Embodied Water, L/kg 45
490

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 84
38
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 890
93
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 27 to 31
8.5
Strength to Weight: Bending, points 24 to 26
10
Thermal Diffusivity, mm2/s 14
17
Thermal Shock Resistance, points 26 to 30
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Bismuth (Bi), % 0
4.0 to 6.0
Carbon (C), % 0.8 to 0.93
0
Copper (Cu), % 0
87 to 91
Iron (Fe), % 98.5 to 98.9
0 to 0.2
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.3 to 0.5
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.3
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0 to 0.050
0 to 0.080
Tin (Sn), % 0
5.0 to 7.0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5