MakeItFrom.com
Menu (ESC)

SAE-AISI 1108 Steel vs. EN 1.8932 Steel

Both SAE-AISI 1108 steel and EN 1.8932 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1108 steel and the bottom bar is EN 1.8932 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 140
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23 to 34
20
Fatigue Strength, MPa 170 to 260
250
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 250 to 280
370
Tensile Strength: Ultimate (UTS), MPa 380 to 440
600
Tensile Strength: Yield (Proof), MPa 220 to 360
370

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
40
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.7
Embodied Energy, MJ/kg 18
24
Embodied Water, L/kg 46
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 340
370
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 13 to 16
21
Strength to Weight: Bending, points 15 to 16
20
Thermal Diffusivity, mm2/s 14
11
Thermal Shock Resistance, points 12 to 14
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.060
Carbon (C), % 0.080 to 0.13
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 98.9 to 99.24
95.5 to 98.9
Manganese (Mn), % 0.6 to 0.8
1.0 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0
0.1 to 0.6
Sulfur (S), % 0.080 to 0.13
0 to 0.015
Vanadium (V), % 0
0 to 0.2