MakeItFrom.com
Menu (ESC)

SAE-AISI 1108 Steel vs. C62500 Bronze

SAE-AISI 1108 steel belongs to the iron alloys classification, while C62500 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1108 steel and the bottom bar is C62500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 23 to 34
1.0
Fatigue Strength, MPa 170 to 260
460
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
42
Shear Strength, MPa 250 to 280
410
Tensile Strength: Ultimate (UTS), MPa 380 to 440
690
Tensile Strength: Yield (Proof), MPa 220 to 360
410

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 400
230
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1420
1050
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 52
47
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
10
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
11

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
26
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 1.4
3.3
Embodied Energy, MJ/kg 18
55
Embodied Water, L/kg 46
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 110
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 340
750
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 13 to 16
24
Strength to Weight: Bending, points 15 to 16
22
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 12 to 14
24

Alloy Composition

Aluminum (Al), % 0
12.5 to 13.5
Carbon (C), % 0.080 to 0.13
0
Copper (Cu), % 0
78.5 to 84
Iron (Fe), % 98.9 to 99.24
3.5 to 5.5
Manganese (Mn), % 0.6 to 0.8
0 to 2.0
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0.080 to 0.13
0
Residuals, % 0
0 to 0.5