MakeItFrom.com
Menu (ESC)

SAE-AISI 1117 Steel vs. EN 1.8912 Steel

Both SAE-AISI 1117 steel and EN 1.8912 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1117 steel and the bottom bar is EN 1.8912 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 150
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17 to 26
20
Fatigue Strength, MPa 190 to 300
290
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 320 to 330
380
Tensile Strength: Ultimate (UTS), MPa 490 to 540
600
Tensile Strength: Yield (Proof), MPa 260 to 460
410

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
46
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.6
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.8
Embodied Energy, MJ/kg 18
24
Embodied Water, L/kg 47
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 550
460
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17 to 19
21
Strength to Weight: Bending, points 18 to 19
20
Thermal Diffusivity, mm2/s 14
12
Thermal Shock Resistance, points 15 to 17
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.015
Carbon (C), % 0.14 to 0.2
0 to 0.22
Chromium (Cr), % 0
0 to 0.35
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 98.3 to 98.8
95 to 99.05
Manganese (Mn), % 1.0 to 1.3
1.0 to 1.8
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 0
0 to 0.85
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.027
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0
0 to 0.65
Sulfur (S), % 0.080 to 0.13
0 to 0.025
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.22