MakeItFrom.com
Menu (ESC)

SAE-AISI 1137 Steel vs. EN 1.8902 Steel

Both SAE-AISI 1137 steel and EN 1.8902 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1137 steel and the bottom bar is EN 1.8902 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 17
21
Fatigue Strength, MPa 250 to 400
290
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 430 to 460
380
Tensile Strength: Ultimate (UTS), MPa 700 to 760
600
Tensile Strength: Yield (Proof), MPa 370 to 650
420

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
44
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
2.6
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.8
Embodied Energy, MJ/kg 19
24
Embodied Water, L/kg 48
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81 to 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 1130
470
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25 to 27
21
Strength to Weight: Bending, points 22 to 24
20
Thermal Diffusivity, mm2/s 14
12
Thermal Shock Resistance, points 21 to 23
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.015
Carbon (C), % 0.32 to 0.39
0 to 0.22
Chromium (Cr), % 0
0 to 0.35
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 97.8 to 98.3
95 to 99.05
Manganese (Mn), % 1.4 to 1.7
1.0 to 1.8
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 0
0 to 0.85
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.027
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0
0 to 0.65
Sulfur (S), % 0.080 to 0.13
0 to 0.030
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.22