MakeItFrom.com
Menu (ESC)

SAE-AISI 1137 Steel vs. Grade 4 Titanium

SAE-AISI 1137 steel belongs to the iron alloys classification, while grade 4 titanium belongs to the titanium alloys. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1137 steel and the bottom bar is grade 4 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
200
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 17
17
Fatigue Strength, MPa 250 to 400
340
Poisson's Ratio 0.29
0.32
Reduction in Area, % 34 to 39
28
Shear Modulus, GPa 73
41
Shear Strength, MPa 430 to 460
390
Tensile Strength: Ultimate (UTS), MPa 700 to 760
640
Tensile Strength: Yield (Proof), MPa 370 to 650
530

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 51
19
Thermal Expansion, µm/m-K 13
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 12
6.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
31
Embodied Energy, MJ/kg 19
500
Embodied Water, L/kg 48
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81 to 100
100
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 1130
1330
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 25 to 27
40
Strength to Weight: Bending, points 22 to 24
37
Thermal Diffusivity, mm2/s 14
7.6
Thermal Shock Resistance, points 21 to 23
46

Alloy Composition

Carbon (C), % 0.32 to 0.39
0 to 0.080
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 97.8 to 98.3
0 to 0.5
Manganese (Mn), % 1.4 to 1.7
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0.080 to 0.13
0
Titanium (Ti), % 0
98.6 to 100
Residuals, % 0
0 to 0.4