MakeItFrom.com
Menu (ESC)

SAE-AISI 1141 Steel vs. C84200 Brass

SAE-AISI 1141 steel belongs to the iron alloys classification, while C84200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1141 steel and the bottom bar is C84200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 17
15
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
40
Tensile Strength: Ultimate (UTS), MPa 740 to 810
250
Tensile Strength: Yield (Proof), MPa 400 to 700
120

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 400
150
Melting Completion (Liquidus), °C 1460
990
Melting Onset (Solidus), °C 1420
840
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 51
72
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
16
Electrical Conductivity: Equal Weight (Specific), % IACS 12
17

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
30
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.4
3.1
Embodied Energy, MJ/kg 19
51
Embodied Water, L/kg 47
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 110
31
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 1290
72
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 26 to 29
8.2
Strength to Weight: Bending, points 23 to 25
10
Thermal Diffusivity, mm2/s 14
23
Thermal Shock Resistance, points 24 to 26
9.1

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.37 to 0.45
0
Copper (Cu), % 0
78 to 82
Iron (Fe), % 97.7 to 98.2
0 to 0.4
Lead (Pb), % 0
2.0 to 3.0
Manganese (Mn), % 1.4 to 1.7
0
Nickel (Ni), % 0
0 to 0.8
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0.080 to 0.13
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
10 to 16
Residuals, % 0
0 to 0.7