MakeItFrom.com
Menu (ESC)

SAE-AISI 1212 Steel vs. C63020 Bronze

SAE-AISI 1212 steel belongs to the iron alloys classification, while C63020 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1212 steel and the bottom bar is C63020 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 11 to 28
6.8
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
44
Shear Strength, MPa 280 to 370
600
Tensile Strength: Ultimate (UTS), MPa 440 to 620
1020
Tensile Strength: Yield (Proof), MPa 260 to 460
740

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 400
230
Melting Completion (Liquidus), °C 1460
1070
Melting Onset (Solidus), °C 1420
1020
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 52
40
Thermal Expansion, µm/m-K 12
18

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
29
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.4
3.6
Embodied Energy, MJ/kg 18
58
Embodied Water, L/kg 46
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64 to 110
63
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 560
2320
Stiffness to Weight: Axial, points 13
8.0
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 15 to 22
34
Strength to Weight: Bending, points 16 to 20
27
Thermal Diffusivity, mm2/s 14
11
Thermal Shock Resistance, points 14 to 20
35

Alloy Composition

Aluminum (Al), % 0
10 to 11
Carbon (C), % 0 to 0.13
0
Chromium (Cr), % 0
0 to 0.050
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
74.7 to 81.8
Iron (Fe), % 98.5 to 99.07
4.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.7 to 1.0
0 to 1.5
Nickel (Ni), % 0
4.2 to 6.0
Phosphorus (P), % 0.070 to 0.12
0
Sulfur (S), % 0.16 to 0.23
0
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5