MakeItFrom.com
Menu (ESC)

SAE-AISI 1213 Steel vs. Grade 15 Titanium

SAE-AISI 1213 steel belongs to the iron alloys classification, while grade 15 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1213 steel and the bottom bar is grade 15 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 29
20
Fatigue Strength, MPa 200 to 290
290
Poisson's Ratio 0.29
0.32
Reduction in Area, % 40 to 50
28
Shear Modulus, GPa 73
41
Shear Strength, MPa 290 to 360
340
Tensile Strength: Ultimate (UTS), MPa 440 to 600
540
Tensile Strength: Yield (Proof), MPa 260 to 470
430

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 51
21
Thermal Expansion, µm/m-K 12
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
32
Embodied Energy, MJ/kg 18
520
Embodied Water, L/kg 46
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 580
870
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 16 to 21
33
Strength to Weight: Bending, points 17 to 20
33
Thermal Diffusivity, mm2/s 14
8.4
Thermal Shock Resistance, points 14 to 19
41

Alloy Composition

Carbon (C), % 0 to 0.13
0 to 0.080
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 98.4 to 99
0 to 0.3
Manganese (Mn), % 0.7 to 1.0
0
Nickel (Ni), % 0
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0.070 to 0.12
0
Ruthenium (Ru), % 0
0.040 to 0.060
Sulfur (S), % 0.24 to 0.33
0
Titanium (Ti), % 0
98.2 to 99.56
Residuals, % 0
0 to 0.4