MakeItFrom.com
Menu (ESC)

SAE-AISI 1213 Steel vs. Grade 30 Titanium

SAE-AISI 1213 steel belongs to the iron alloys classification, while grade 30 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1213 steel and the bottom bar is grade 30 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 29
23
Fatigue Strength, MPa 200 to 290
250
Poisson's Ratio 0.29
0.32
Reduction in Area, % 40 to 50
34
Shear Modulus, GPa 73
41
Shear Strength, MPa 290 to 360
240
Tensile Strength: Ultimate (UTS), MPa 440 to 600
390
Tensile Strength: Yield (Proof), MPa 260 to 470
350

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 51
21
Thermal Expansion, µm/m-K 12
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
36
Embodied Energy, MJ/kg 18
600
Embodied Water, L/kg 46
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 110
86
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 580
590
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 16 to 21
24
Strength to Weight: Bending, points 17 to 20
26
Thermal Diffusivity, mm2/s 14
8.6
Thermal Shock Resistance, points 14 to 19
30

Alloy Composition

Carbon (C), % 0 to 0.13
0 to 0.080
Cobalt (Co), % 0
0.2 to 0.8
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 98.4 to 99
0 to 0.3
Manganese (Mn), % 0.7 to 1.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0.070 to 0.12
0
Sulfur (S), % 0.24 to 0.33
0
Titanium (Ti), % 0
98 to 99.76
Residuals, % 0
0 to 0.4