MakeItFrom.com
Menu (ESC)

SAE-AISI 1213 Steel vs. C84000 Brass

SAE-AISI 1213 steel belongs to the iron alloys classification, while C84000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1213 steel and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 190
65
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 29
27
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 440 to 600
250
Tensile Strength: Yield (Proof), MPa 260 to 470
140

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
1040
Melting Onset (Solidus), °C 1420
940
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 51
72
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
16
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
17

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
30
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 1.4
3.0
Embodied Energy, MJ/kg 18
49
Embodied Water, L/kg 46
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 110
58
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 580
83
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 16 to 21
8.2
Strength to Weight: Bending, points 17 to 20
10
Thermal Diffusivity, mm2/s 14
22
Thermal Shock Resistance, points 14 to 19
9.0

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0 to 0.13
0
Copper (Cu), % 0
82 to 89
Iron (Fe), % 98.4 to 99
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.7 to 1.0
0 to 0.010
Nickel (Ni), % 0
0.5 to 2.0
Phosphorus (P), % 0.070 to 0.12
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0.24 to 0.33
0.1 to 0.65
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7