MakeItFrom.com
Menu (ESC)

SAE-AISI 1213 Steel vs. C97600 Dairy Metal

SAE-AISI 1213 steel belongs to the iron alloys classification, while C97600 dairy metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1213 steel and the bottom bar is C97600 dairy metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 11 to 29
11
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
46
Tensile Strength: Ultimate (UTS), MPa 440 to 600
310
Tensile Strength: Yield (Proof), MPa 260 to 470
140

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
210
Melting Completion (Liquidus), °C 1460
1140
Melting Onset (Solidus), °C 1420
1110
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 51
22
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
37
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.4
4.6
Embodied Energy, MJ/kg 18
69
Embodied Water, L/kg 46
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 110
29
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 580
85
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 16 to 21
9.8
Strength to Weight: Bending, points 17 to 20
12
Thermal Diffusivity, mm2/s 14
6.5
Thermal Shock Resistance, points 14 to 19
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.13
0
Copper (Cu), % 0
63 to 67
Iron (Fe), % 98.4 to 99
0 to 1.5
Lead (Pb), % 0
3.0 to 5.0
Manganese (Mn), % 0.7 to 1.0
0
Nickel (Ni), % 0
19 to 21.5
Phosphorus (P), % 0.070 to 0.12
0 to 0.050
Silicon (Si), % 0
0 to 0.15
Sulfur (S), % 0.24 to 0.33
0 to 0.080
Tin (Sn), % 0
3.5 to 4.0
Zinc (Zn), % 0
3.0 to 9.0
Residuals, % 0
0 to 0.3