MakeItFrom.com
Menu (ESC)

SAE-AISI 12L14 Steel vs. CC493K Bronze

SAE-AISI 12L14 steel belongs to the iron alloys classification, while CC493K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 12L14 steel and the bottom bar is CC493K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 170
74
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 11 to 25
14
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
39
Tensile Strength: Ultimate (UTS), MPa 440 to 620
270
Tensile Strength: Yield (Proof), MPa 260 to 460
140

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 400
160
Melting Completion (Liquidus), °C 1460
960
Melting Onset (Solidus), °C 1420
880
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 51
61
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
12
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
12

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
32
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.4
3.3
Embodied Energy, MJ/kg 18
53
Embodied Water, L/kg 47
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64 to 93
33
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 560
89
Stiffness to Weight: Axial, points 13
6.5
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 15 to 22
8.6
Strength to Weight: Bending, points 16 to 20
11
Thermal Diffusivity, mm2/s 14
19
Thermal Shock Resistance, points 14 to 20
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Carbon (C), % 0 to 0.15
0
Copper (Cu), % 0
79 to 86
Iron (Fe), % 97.9 to 98.7
0 to 0.2
Lead (Pb), % 0.15 to 0.35
5.0 to 8.0
Manganese (Mn), % 0.85 to 1.2
0
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0.040 to 0.090
0 to 0.1
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0.26 to 0.35
0 to 0.1
Tin (Sn), % 0
5.2 to 8.0
Zinc (Zn), % 0
2.0 to 5.0