SAE-AISI 1330 Steel vs. EN 1.4107 Stainless Steel
Both SAE-AISI 1330 steel and EN 1.4107 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 1330 steel and the bottom bar is EN 1.4107 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 11 to 23 | |
18 to 21 |
Fatigue Strength, MPa | 210 to 380 | |
260 to 350 |
Poisson's Ratio | 0.29 | |
0.28 |
Shear Modulus, GPa | 73 | |
76 |
Tensile Strength: Ultimate (UTS), MPa | 520 to 710 | |
620 to 700 |
Tensile Strength: Yield (Proof), MPa | 290 to 610 | |
400 to 570 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
270 |
Maximum Temperature: Mechanical, °C | 400 | |
740 |
Melting Completion (Liquidus), °C | 1460 | |
1450 |
Melting Onset (Solidus), °C | 1410 | |
1410 |
Specific Heat Capacity, J/kg-K | 470 | |
480 |
Thermal Conductivity, W/m-K | 51 | |
27 |
Thermal Expansion, µm/m-K | 12 | |
10 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.2 | |
2.9 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.3 | |
3.3 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.9 | |
7.5 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
2.1 |
Embodied Energy, MJ/kg | 19 | |
30 |
Embodied Water, L/kg | 48 | |
100 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 76 to 100 | |
110 to 120 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 230 to 990 | |
420 to 840 |
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
25 |
Strength to Weight: Axial, points | 19 to 25 | |
22 to 25 |
Strength to Weight: Bending, points | 18 to 23 | |
21 to 22 |
Thermal Diffusivity, mm2/s | 14 | |
7.2 |
Thermal Shock Resistance, points | 17 to 23 | |
22 to 25 |
Alloy Composition
Carbon (C), % | 0.28 to 0.33 | |
0 to 0.1 |
Chromium (Cr), % | 0 | |
11.5 to 12.5 |
Copper (Cu), % | 0 | |
0 to 0.3 |
Iron (Fe), % | 97.3 to 98 | |
83.8 to 87.2 |
Manganese (Mn), % | 1.6 to 1.9 | |
0.5 to 0.8 |
Molybdenum (Mo), % | 0 | |
0 to 0.5 |
Nickel (Ni), % | 0 | |
0.8 to 1.5 |
Phosphorus (P), % | 0 to 0.035 | |
0 to 0.030 |
Silicon (Si), % | 0.15 to 0.35 | |
0 to 0.4 |
Sulfur (S), % | 0 to 0.040 | |
0 to 0.020 |
Vanadium (V), % | 0 | |
0 to 0.080 |