MakeItFrom.com
Menu (ESC)

SAE-AISI 1340 Steel vs. ASTM A372 Grade C Steel

Both SAE-AISI 1340 steel and ASTM A372 grade C steel are iron alloys. They have a very high 99% of their average alloy composition in common.

For each property being compared, the top bar is SAE-AISI 1340 steel and the bottom bar is ASTM A372 grade C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 210
210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 23
17
Fatigue Strength, MPa 220 to 390
290
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Shear Strength, MPa 340 to 440
440
Tensile Strength: Ultimate (UTS), MPa 540 to 730
710
Tensile Strength: Yield (Proof), MPa 300 to 620
430

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
51
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
1.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 19
19
Embodied Water, L/kg 48
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 1040
500
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19 to 26
25
Strength to Weight: Bending, points 19 to 23
23
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 17 to 23
22

Alloy Composition

Carbon (C), % 0.38 to 0.43
0 to 0.48
Iron (Fe), % 97.2 to 97.9
97.5 to 99.85
Manganese (Mn), % 1.6 to 1.9
0 to 1.7
Phosphorus (P), % 0 to 0.035
0 to 0.015
Silicon (Si), % 0.15 to 0.35
0.15 to 0.35
Sulfur (S), % 0 to 0.040
0 to 0.010