MakeItFrom.com
Menu (ESC)

SAE-AISI 1340 Steel vs. S31060 Stainless Steel

Both SAE-AISI 1340 steel and S31060 stainless steel are iron alloys. They have 65% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1340 steel and the bottom bar is S31060 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 210
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 11 to 23
46
Fatigue Strength, MPa 220 to 390
290
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 72
78
Shear Strength, MPa 340 to 440
480
Tensile Strength: Ultimate (UTS), MPa 540 to 730
680
Tensile Strength: Yield (Proof), MPa 300 to 620
310

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
1080
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1410
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
15
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
18
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
3.4
Embodied Energy, MJ/kg 19
48
Embodied Water, L/kg 48
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 110
260
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 1040
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19 to 26
24
Strength to Weight: Bending, points 19 to 23
22
Thermal Diffusivity, mm2/s 14
4.0
Thermal Shock Resistance, points 17 to 23
15

Alloy Composition

Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0.38 to 0.43
0.050 to 0.1
Cerium (Ce), % 0
0 to 0.070
Chromium (Cr), % 0
22 to 24
Iron (Fe), % 97.2 to 97.9
61.4 to 67.8
Lanthanum (La), % 0
0 to 0.070
Manganese (Mn), % 1.6 to 1.9
0 to 1.0
Nickel (Ni), % 0
10 to 12.5
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0.15 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.030