SAE-AISI 1345 Steel vs. C95300 Bronze
SAE-AISI 1345 steel belongs to the iron alloys classification, while C95300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 1345 steel and the bottom bar is C95300 bronze.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 170 to 210 | |
120 to 170 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
110 |
Elongation at Break, % | 11 to 23 | |
14 to 25 |
Poisson's Ratio | 0.29 | |
0.34 |
Shear Modulus, GPa | 72 | |
42 |
Tensile Strength: Ultimate (UTS), MPa | 590 to 730 | |
520 to 610 |
Tensile Strength: Yield (Proof), MPa | 330 to 620 | |
190 to 310 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
230 |
Maximum Temperature: Mechanical, °C | 400 | |
220 |
Melting Completion (Liquidus), °C | 1450 | |
1050 |
Melting Onset (Solidus), °C | 1410 | |
1040 |
Specific Heat Capacity, J/kg-K | 470 | |
440 |
Thermal Conductivity, W/m-K | 51 | |
63 |
Thermal Expansion, µm/m-K | 12 | |
18 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.2 | |
13 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.3 | |
14 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.9 | |
28 |
Density, g/cm3 | 7.8 | |
8.3 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
3.1 |
Embodied Energy, MJ/kg | 19 | |
52 |
Embodied Water, L/kg | 48 | |
390 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 78 to 120 | |
73 to 100 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 290 to 1040 | |
170 to 420 |
Stiffness to Weight: Axial, points | 13 | |
7.5 |
Stiffness to Weight: Bending, points | 24 | |
19 |
Strength to Weight: Axial, points | 21 to 26 | |
17 to 21 |
Strength to Weight: Bending, points | 20 to 23 | |
17 to 19 |
Thermal Diffusivity, mm2/s | 14 | |
17 |
Thermal Shock Resistance, points | 19 to 23 | |
19 to 22 |
Alloy Composition
Aluminum (Al), % | 0 | |
9.0 to 11 |
Carbon (C), % | 0.43 to 0.48 | |
0 |
Copper (Cu), % | 0 | |
86.5 to 90.2 |
Iron (Fe), % | 97.2 to 97.8 | |
0.8 to 1.5 |
Manganese (Mn), % | 1.6 to 1.9 | |
0 |
Phosphorus (P), % | 0 to 0.035 | |
0 |
Silicon (Si), % | 0.15 to 0.35 | |
0 |
Sulfur (S), % | 0 to 0.040 | |
0 |
Residuals, % | 0 | |
0 to 1.0 |