MakeItFrom.com
Menu (ESC)

SAE-AISI 1527 Steel vs. EN 1.0258 Steel

Both SAE-AISI 1527 steel and EN 1.0258 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1527 steel and the bottom bar is EN 1.0258 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 180
140
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 13 to 21
23
Fatigue Strength, MPa 220 to 350
200
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 370 to 390
310
Tensile Strength: Ultimate (UTS), MPa 590 to 640
490
Tensile Strength: Yield (Proof), MPa 320 to 550
290

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
49
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.1
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.5
Embodied Energy, MJ/kg 19
19
Embodied Water, L/kg 47
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82 to 100
95
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 800
220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21 to 23
17
Strength to Weight: Bending, points 20 to 21
18
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 19 to 20
16

Alloy Composition

Carbon (C), % 0.22 to 0.29
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 98.1 to 98.6
96.9 to 100
Manganese (Mn), % 1.2 to 1.5
0 to 1.4
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0 to 0.050
0 to 0.020
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020