MakeItFrom.com
Menu (ESC)

SAE-AISI 1541 Steel vs. CR020A Copper

SAE-AISI 1541 steel belongs to the iron alloys classification, while CR020A copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1541 steel and the bottom bar is CR020A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 11 to 17
15
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 720 to 790
220
Tensile Strength: Yield (Proof), MPa 390 to 680
130

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 52
380
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
100
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
100

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
31
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 1.4
2.6
Embodied Energy, MJ/kg 19
41
Embodied Water, L/kg 48
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 100
29
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 1250
76
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 25 to 28
6.8
Strength to Weight: Bending, points 23 to 24
9.0
Thermal Diffusivity, mm2/s 14
110
Thermal Shock Resistance, points 23 to 25
7.8

Alloy Composition

Bismuth (Bi), % 0
0 to 0.00050
Carbon (C), % 0.36 to 0.44
0
Copper (Cu), % 0
99.95 to 99.999
Iron (Fe), % 97.8 to 98.3
0
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 1.4 to 1.7
0
Phosphorus (P), % 0 to 0.040
0.0010 to 0.0060
Silver (Ag), % 0
0 to 0.015
Sulfur (S), % 0 to 0.050
0