MakeItFrom.com
Menu (ESC)

SAE-AISI 1547 Steel vs. S39274 Stainless Steel

Both SAE-AISI 1547 steel and S39274 stainless steel are iron alloys. They have 62% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1547 steel and the bottom bar is S39274 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 220
270
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 11 to 17
17
Fatigue Strength, MPa 270 to 430
380
Poisson's Ratio 0.29
0.27
Reduction in Area, % 32 to 40
34
Shear Modulus, GPa 73
81
Shear Strength, MPa 440 to 480
560
Tensile Strength: Ultimate (UTS), MPa 740 to 800
900
Tensile Strength: Yield (Proof), MPa 400 to 690
620

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1480
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
16
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
24
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.4
4.3
Embodied Energy, MJ/kg 19
60
Embodied Water, L/kg 47
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 1280
940
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 26 to 28
32
Strength to Weight: Bending, points 23 to 24
26
Thermal Diffusivity, mm2/s 14
4.2
Thermal Shock Resistance, points 23 to 25
25

Alloy Composition

Carbon (C), % 0.43 to 0.51
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0
0.2 to 0.8
Iron (Fe), % 97.8 to 98.2
57 to 65.6
Manganese (Mn), % 1.4 to 1.7
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0 to 0.050
0 to 0.020
Tungsten (W), % 0
1.5 to 2.5