MakeItFrom.com
Menu (ESC)

SAE-AISI 1548 Steel vs. EN 1.8912 Steel

Both SAE-AISI 1548 steel and EN 1.8912 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1548 steel and the bottom bar is EN 1.8912 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220 to 250
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 16
20
Fatigue Strength, MPa 270 to 430
290
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Shear Strength, MPa 440 to 500
380
Tensile Strength: Ultimate (UTS), MPa 730 to 830
600
Tensile Strength: Yield (Proof), MPa 420 to 690
410

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
46
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.6
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.8
Embodied Energy, MJ/kg 19
24
Embodied Water, L/kg 47
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 99
110
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 1280
460
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26 to 30
21
Strength to Weight: Bending, points 23 to 25
20
Thermal Diffusivity, mm2/s 14
12
Thermal Shock Resistance, points 23 to 27
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.015
Carbon (C), % 0.44 to 0.52
0 to 0.22
Chromium (Cr), % 0
0 to 0.35
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 98 to 98.5
95 to 99.05
Manganese (Mn), % 1.1 to 1.4
1.0 to 1.8
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 0
0 to 0.85
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.027
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0
0 to 0.65
Sulfur (S), % 0 to 0.050
0 to 0.025
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.22