MakeItFrom.com
Menu (ESC)

SAE-AISI 1548 Steel vs. Grade 15 Titanium

SAE-AISI 1548 steel belongs to the iron alloys classification, while grade 15 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1548 steel and the bottom bar is grade 15 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 16
20
Fatigue Strength, MPa 270 to 430
290
Poisson's Ratio 0.29
0.32
Reduction in Area, % 31 to 39
28
Shear Modulus, GPa 72
41
Shear Strength, MPa 440 to 500
340
Tensile Strength: Ultimate (UTS), MPa 730 to 830
540
Tensile Strength: Yield (Proof), MPa 420 to 690
430

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 51
21
Thermal Expansion, µm/m-K 12
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
32
Embodied Energy, MJ/kg 19
520
Embodied Water, L/kg 47
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 99
100
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 1280
870
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 26 to 30
33
Strength to Weight: Bending, points 23 to 25
33
Thermal Diffusivity, mm2/s 14
8.4
Thermal Shock Resistance, points 23 to 27
41

Alloy Composition

Carbon (C), % 0.44 to 0.52
0 to 0.080
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 98 to 98.5
0 to 0.3
Manganese (Mn), % 1.1 to 1.4
0
Nickel (Ni), % 0
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Ruthenium (Ru), % 0
0.040 to 0.060
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
98.2 to 99.56
Residuals, % 0
0 to 0.4