MakeItFrom.com
Menu (ESC)

SAE-AISI 1548 Steel vs. N09777 Nickel

SAE-AISI 1548 steel belongs to the iron alloys classification, while N09777 nickel belongs to the nickel alloys. They have a modest 39% of their average alloy composition in common, which, by itself, doesn't mean much. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1548 steel and the bottom bar is N09777 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 11 to 16
39
Fatigue Strength, MPa 270 to 430
190
Poisson's Ratio 0.29
0.29
Reduction in Area, % 31 to 39
57
Shear Modulus, GPa 72
77
Shear Strength, MPa 440 to 500
400
Tensile Strength: Ultimate (UTS), MPa 730 to 830
580
Tensile Strength: Yield (Proof), MPa 420 to 690
240

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
960
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
460
Thermal Expansion, µm/m-K 12
13

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
38
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.4
7.4
Embodied Energy, MJ/kg 19
100
Embodied Water, L/kg 47
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 99
180
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 1280
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26 to 30
20
Strength to Weight: Bending, points 23 to 25
19
Thermal Shock Resistance, points 23 to 27
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Carbon (C), % 0.44 to 0.52
0 to 0.030
Chromium (Cr), % 0
14 to 19
Iron (Fe), % 98 to 98.5
28.5 to 47.5
Manganese (Mn), % 1.1 to 1.4
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 5.5
Nickel (Ni), % 0
34 to 42
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.010
Titanium (Ti), % 0
2.0 to 3.0