MakeItFrom.com
Menu (ESC)

SAE-AISI 1552 Steel vs. Grade C-2 Titanium

SAE-AISI 1552 steel belongs to the iron alloys classification, while grade C-2 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1552 steel and the bottom bar is grade C-2 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220 to 250
180
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 14
17
Fatigue Strength, MPa 290 to 400
200
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 72
40
Tensile Strength: Ultimate (UTS), MPa 760 to 840
390
Tensile Strength: Yield (Proof), MPa 460 to 650
310

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 51
21
Thermal Expansion, µm/m-K 11
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 12
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
31
Embodied Energy, MJ/kg 19
510
Embodied Water, L/kg 47
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81 to 98
61
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 1130
460
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 27 to 30
24
Strength to Weight: Bending, points 24 to 25
26
Thermal Diffusivity, mm2/s 14
8.8
Thermal Shock Resistance, points 26 to 29
30

Alloy Composition

Carbon (C), % 0.47 to 0.55
0 to 0.1
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 97.9 to 98.3
0 to 0.2
Manganese (Mn), % 1.2 to 1.5
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
98.8 to 100
Residuals, % 0
0 to 0.4