MakeItFrom.com
Menu (ESC)

SAE-AISI 1552 Steel vs. S31260 Stainless Steel

Both SAE-AISI 1552 steel and S31260 stainless steel are iron alloys. They have 64% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1552 steel and the bottom bar is S31260 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220 to 250
260
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 11 to 14
23
Fatigue Strength, MPa 290 to 400
370
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 72
80
Shear Strength, MPa 460 to 510
500
Tensile Strength: Ultimate (UTS), MPa 760 to 840
790
Tensile Strength: Yield (Proof), MPa 460 to 650
540

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
16
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
20
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
3.9
Embodied Energy, MJ/kg 19
53
Embodied Water, L/kg 47
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81 to 98
160
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 1130
720
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 27 to 30
28
Strength to Weight: Bending, points 24 to 25
24
Thermal Diffusivity, mm2/s 14
4.3
Thermal Shock Resistance, points 26 to 29
22

Alloy Composition

Carbon (C), % 0.47 to 0.55
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0
0.2 to 0.8
Iron (Fe), % 97.9 to 98.3
59.6 to 67.6
Manganese (Mn), % 1.2 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
5.5 to 7.5
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0 to 0.050
0 to 0.030
Tungsten (W), % 0
0.1 to 0.5